

Department of Electrical & Electronics Engineering

Course Title: MICROCONTROLLERS LAB

Following documents are available in Course File.

S.No. Points Yes No

1 Institute and Department Vision and Mission Statements Y

2 PEO & PO Mapping Y

3 Academic Calendar Y

4 Subject Allocation Sheet Y

5 Class Time Table, Individual Timetable (Single Sheet) Y

6 Syllabus Copy Y

7 Course Handout N

8 CO-PO Mapping Y

9 CO-Cognitive Level Mapping Y

10 Lecture Notes N

11 Tutorial Sheets With Solution N

12 Soft Copy of Notes/PPT/Slides Y

13 Sessional Question Paper and Scheme of Evaluation N

14
Best, Average and Weak Answer Scripts for Each Sessional
Exam. (Photocopies)

 N

15 Assignment Questions and Solutions N

16 Previous University Question Papers N

17 Result Analysis Y

18 Feedback From Students Y

19 Course Exit Survey N

20 CO Attainment for All Mids. N

21 Remedial Action. N

Course Instructor / Course Coordinator Course Instructor / Course Coordinator

 (Name) (Signature)

Vision of the Institute

To be among the best of the institutions for engineers and technologists

with attitudes, skills and knowledge and to become an epicenter of creative

solutions.

Mission of the Institute

To achieve and impart quality education with an emphasis on practical skills

and social relevance.

Vision of the Department

To impart technical knowledge and skills required to succeed in life,

career and help society to achieve self-sufficiency.

Mission of the Department

 To become an internationally leading department for higher learning.

 To build upon the culture and values of universal science and contemporary

education.

 To be a center of research and education generating knowledge and

technologies which lay groundwork in shaping the future in the fields of

electrical and electronics engineering.

 To develop partnership with industrial, R&D and government agencies and

actively participate in conferences, technical and community activities.

Program Educational Objectives (B.Tech-EEE)

This programme is meant to prepare our students to professionally thrive and to lead.

During their progression:

PEO 1: Graduates will have a successful technical or professional careers, including supportive and

leadership roles on multidisciplinary teams.

PEO 2: Graduates will be able to acquire, use and develop skills as required for effective professional

practices.

PEO 3: Graduates will be able to attain holistic education that is an essential prerequisite for being a

responsible member of society.

PEO 4: Graduates will be engaged in life-long learning, to remain abreast in their profession and be leaders

in our technologically vibrant society.

Program Outcomes (B.Tech-EEE)

a. Ability to apply knowledge of mathematics, science, and engineering.

b. Ability to design and conduct experiments, as well as to analyze and interpret data.

c. Ability to design a system, component, or process to meet desired needs within realistic

constraints such as economic, environmental, social, political, ethical, health and safety,

manufacturability, and sustainability.

d. Ability to function on multi-disciplinary teams.

e. Ability to identify, formulates, and solves engineering problems.

f. Understanding of professional and ethical responsibility.

g. Ability to communicate effectively.

h. Broad education necessary to understand the impact of engineering solutions in a global,

economic, environmental, and societal context.

i. Recognition of the need for, and an ability to engage in life-long learning.

j. Knowledge of contemporary issues.

k. Ability to utilize experimental, statistical and computational methods and tools necessary for

engineering practice.

l. Graduates will demonstrate an ability to design electrical and electronic circuits, power

electronics, power systems; electrical machines analyze and interpret data and also an ability

to design digital and analog systems and programming them.

Name of the Course: MICROCONTROLLERS-LAB

Program Objectives:

S.No Course Objectives

1 To explain the concepts of 8086 instruction sets and architectures

2 To compare architectures of microprocessors and microcontrollers

3 To apply the instruction set of 8051 microcontrollers

4 To analyze assembly language programming concepts

5 To describe the various interrupt delays for microprocessors and microcontrollers

6 To interface various devices with 8051 microcontrollers

7 To create various programs to run several applications

Program Outcomes:

S.No
Course Outcomes

1 Compare the functionally and architectures of microprocessors and microcontrollers

2 Analyze assembly language programming techniques

3 Explain the implementation of 8051 instruction set

4 Analyze assembly language programming concepts

5 Acquainted with design of microcontrollers

6 Interface various devices with microcontrollers

7 Design various programs to run several applications

Assessment methods:

1. Regular attendance to classes.

2. Written tests clearly linked to learning objectives

3. Classroom assessment techniques like tutorial sheets and assignments.

4. Seminars.

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year : 2018-2019

Semester : I

Name of the Program: B.Tech …EEE… Year: ……III……….. Section: A, B.

Course/Subject:MICROCONTROLLERS-LAB................ Course Code: GR15A2059

Name of the Faculty: …PRASANTH KUMAR P....... Dept.: …EEE……

Designation: ASSISTANT PROFESSOR.

Guidelines to study the Course/ Subject: ……………MICROCONTROLLERS-LAB……………..

Course Design and Delivery System (CDD):

 The Course syllabus is written into number of learning objectives and outcomes.
 These learning objectives and outcomes will be achieved through lectures, assessments,

assignments, seminars, presentations.
 Every student will be given an assessment plan, criteria for assessment, scheme of

evaluation and grading method.
 The Learning Process will be carried out through assessments of Knowledge, Skills and

Attitude by various methods and the students will be given guidance to refer to the text
books, reference books.

The faculty be able to –

 Understand the principles of Learning

 Develop instructional objectives for a given topic

 Prepare course, unit and lesson plans

 Use appropriate teaching and learning aids like Slides and Paper Presentation.

 Plan and deliver lectures effectively.

 Provide the students of availability of the content in the textbooks and Internet.

 Provide feedback to students using various methods of Assessments and tools of Evaluation

 Act as a guide, advisor, counselor, facilitator, and motivator and not just as a teacher alone.

Signature of HOD Signature of faculty

Date: Date:

COURSE SCHEDULE

Academic Year : 2018-2019

Semester : I

Name of the Program: B.Tech …EEE… Year: ……III……….. Section: A, B.

Course/Subject:MICROCONTROLLERS-LAB................ Course Code: GR15A2059

Name of the Faculty: …PRASANTH KUMAR P....... Dept.: …EEE……

Designation: ASSISTANT PROFESSOR.

The Schedule for the whole Course / Subject is:

S. No. Description
Total number of

Periods

1 Introduction to Arduino 4

2 Arduino Programming 4

3 LEDs and Switches 4

4 LCD 4

5 Serial Communication 4

6 Reading Sensors using Internal ADC 4

7 Device Control 4

8 Motor Control 4

9 Bluetooth 4

10 ZigBee 4

11 Real Time Clock (RTC) 4

Total No. of Instructional periods available for the course: ……44……. Periods

Signature of HOD Signature of faculty

Date: Date:

ILLUSTRATIVE VERBS FOR STATING

INSTRUCTIONAL OBJECTIVES

These verbs can also be used while framing questions for Continuous Assessment Examinations as well as for End –

 Semester (final) Examinations

ILLUSTRATIVE VERBS FOR STATING GENERAL OBJECTIVES/OUTCOMES

ILLUSTRATIVE VERBS FOR STATING SPECIFIC OBJECTIVES/OUTCOMES:

A. COGNITIVE DOMAIN (KNOWLEDGE)

1 2 3 4 5 6

Knowledge
Comprehension

Understanding
Application

of knowledge &

comprehension

Analysis

Of whole w.r.t. its

constituents

Synthesis
Evaluation

Judgment

Define

Identify

Label

List

Select

State

Convert

Describe (a

Procedure)

Distinguish

Estimate

Explain why/how

Generalize

Give examples

Illustrate

Summarize

Program

Deduce

Modify

Predict

Prepare

Relate

Show

Solve

Differentiate

Distinguish

Separate

Design

Generate

Reconstruct

Revise

Appraise

Compare

Conclude

Contrast

Criticize

Justify

Interpret

Support

B. AFFECTIVE DOMAIN (ATTITUDE) C. PSYCHOMOTOR DOMAIN (SKILLS)

Adhere

Assist

Attend

Change

Develop

Help

Influence

Resolve

Select

Serve

Share

Bend

Calibrate

Compress

Conduct

Connect

Convert

Decrease

Dissect

Draw

Extend

Feed

File

Grow

Increase

Insert

Keep

Elongate

Limit

Manipulate

Reset

Paint

Perform

Prepare

Remove

Replace

Report

Weigh

Set

Straighten

Strengthen

Time

Transfer

Type

Generate

Evaluate

Analyze

Design

Understand

Apply

Know

Comprehend

SCHEDULE OF INSTRUCTIONS

COURSE PLAN

Academic Year : 2018-2019

Semester : I

Name of the Program: B.Tech ……..Electrical……..… Year: …III….. Section: ……A,B.........

Course/Subject: ………MICROCONTROLLERS-LAB…………… Course Code: GR15A2059

Name of the Faculty: …PRASANTH KUMAR P….. Dept.: ……EEE……

Designation: ASST.PROFESSOR.

S.No Date
Exp.

No

No. of

periods
Topics

1 1 4 Task1: LED patterns

2 1 4 Task2: Switches & LEDs

3 2 4 Task3: LCD

4 3 4 Task4: UART

5 4 4 Task5: TRIAC

6 5 4 Task6: ADC

7 6 4 Task7: DAC

8 7 4 Task8: DC motor

9 8 4 Task9: ZigBee

10 9 4 Task10: RF 433MHz

11 10 4 Task11: Bluetooth

12 11 4 Task12: Ethernet

13 12 4 Task13: RTC

14 13 4 Task14: SDcard

Signature of HOD Signature of faculty

Date: Date:

Program Educational Objectives (PEOs) - Program Outcomes (POs)

Relationship Matrix

(Indicate the relationships by mark “X”)

P-Outcomes

PEOs

a

b

c

d

e

f

g

h

i

j

k

l

1 X X X X X X X X X X

2 X X X X X X X X X X

3 X X X X X X X X

4 X X X X

Gokaraju Rangaraju Institute of Engineering and Technology
(Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090, India.

GRIET/DAA/1H/G/18-19 05 May 2018

 ACADEMIC CALENDAR
 Academic Year 2018-19

 III & IV B.TECH – FIRST SEMESTER

S. No. EVENT PERIOD DURATION
1 1st Spell of Instructions 02-07-2018 to 01-09-2018 9 Weeks
2 1st Mid-term Examinations 03-09-2018 to 05-09-2018 3 Days
3 2nd Spell of Instructions 06-09-2018 to 24-10-2018 7 Weeks
4 2nd Mid-term Examinations 25-10-2018 to 27-10-2018 3 Days
5 Preparation 29-10-2018 to 06-11-2018 1 Week 3 Days
6 End Semester Examinations (Theory/

Practicals) Regular/Supplementary
08-11-2018 to 08-12-2018 4 Weeks 3 Days

7 Commencement of Second Semester,
A.Y 2018-19

10-12-2018

III & IV B.TECH – SECOND SEMESTER

S. No. EVENT PERIOD DURATION
1 1st Spell of Instruction 10-12-2018 to 02-02-2019 8 Weeks
2 1st Mid-term Examinations 04-02-2019 to 06-02-2019 3 Days
3 2nd Spell of Instruction 07-02-2019 to 06-04-2019 8 Weeks 3 Days
4 2nd Mid-term Examinations 08-04-2019 to 10-04-2019 3 Days
5 Preparation 11-04-2019 to 17-04-2019 1 Week
6 End Semester Examinations (Theory/

Practicals) Regular
18-04-2019 to 08-05-2019 3 Weeks

7 Supplementary and Summer Vacation 09-05-2019 to 22-06-2019 6 Weeks 3 Days
8 Commencement of First Semester, A.Y

2019-20
24-06-2019

Copy to Director, Principal, Vice Principal, DOA, DOE, Balaji Kumar, DCGC, All HODs

(Dr. K. Anuradha)
 Dean of Academic Affairs

2018-19 I-Sem Subject Allocation sheet

GRIET/EEE/05B/G/18-19 30.04.18

II YEAR(GR17) Section-A Section-B

Special Functions and Complex Variable Dr GS Dr GS

Electromagnetic Fields SN SN

Network Theory MS MS

DC Machines and Transformers Dr BPB Dr BPB

Computer Organization PRK PRK

DC Machines Lab MP/DSR PRK/DSR

Electrical Networks Lab YSV/GBR YSV/GBR

Electrical Simulation Lab GSR/PS GSR/PS

Environmental Science

III YEAR (GR15) Section-A Section-B

Power Transmission System VVRR/MP VVRR/MP

 Microcontrollers PK PK

Power Electronics Dr TSK DKK

Electrical Measurements& Instrumentation (PE-1) UVL UVL

Solar & Wind Energy Systems (OE-1) PSVD/Dr JP
PSVD/Dr

JP

Sensors/Measurements& Instrumentation Lab PSVD/PS UVL/PS

Power Electronics Lab PPK/MRE SN/MRE

 Microcontrollers Lab RAK/DKK PK/DKK

IV YEAR(GR15) Section-A Section-B

Power Semiconductor Drives YSV Dr DGP

Power System Operation & Control Dr JSD Dr JSD

High Voltage DC Transmission Systems MRE Dr SVJK

Electrical Distribution Systems (PE-3) VVSM

High Voltage Engineering (PE-3) VUR

Soft Computing Techniques (OE-3) RAK RAK

DSP based Electrical Lab AVK/DKK AVK/DKK

Power Systems Simulation Lab VVSM / GSR
VVSM /

GSR

Power Electronic Drives Lab MP/GBR MP/GBR

I/I BEE(AICTE) A/B C/D/E

BEE ML

BEE KS

BEE MK

BEE MVK

BEE MNSR

Civil II/I (GR15) A B

ET PPK PPK

 M.Tech (PE)(AICTE) A

Electric Drives System Dr DGP

Power Electronic Converters Dr TSK

Power Quality AVK

Electric and Hybrid Vehicles Dr BPB

Electrical Drives Laboratory AVK/GBR

Power Electronics Lab SN/MS

 M.Tech (PS)(AICTE) A

Power System Analysis Dr JSD

Power System Dynamics Dr SVJK

Power Quality AVK

Electric and Hybrid Vehicles Dr BPB

Power System Steady State Analysis Lab VVSM/VVRR

Power System Dynamics Lab
Dr

SVJK/YSV

COURSE TIME-TABLE

Academic Year : 2018-2019

Semester : I

Name of the Program: B.Tech …EEE… Year: ……III……….. Section: B.

Course/Subject:MICROCONTROLLERS-LAB................. Course Code: GR15A2059

Name of the Faculty: …PRASANTH KUMAR P....... Dept.: EEE

Designation: ASSISTANT PROFESSOR.

2018-19 Semester-I Time-Table

9

10

11

12

13

14

15

Monday

Tuesday
MC-LAB

III-B1

12:00-03:00

Wednesday

Thursday

Friday

Saturday
MC-LAB

III-B2

12:00-03:00

Signature of HOD Signature of faculty

Date: Date:

SYLLABUS

Academic Year : 2018-2019

Semester : I

Name of the Program: B.Tech …EEE… Year: ……III……….. Section: A, B.

Course/Subject:MICROCONTROLLERS-LAB...............Course Code: GR15A2059

Name of the Faculty: …PRASANTH KUMAR P.......Dept.: …EEE……

Designation: ASSISTANT PROFESSOR.

MICROCONTROLLERS-LAB

Course Code: GR15A2059 L-0 T-0 P-2 C-2 III Year I-Sem

List of experiments on 2G kit

Task1. LED patterns.

a) Blinking LEDs

b) Serial lights

c) Half on/Half off

d) Alternate on/off

Task2.Switches & LEDs

a) Press switch to make corresponding LED on

b) Press switch to make corresponding LED off

c) First switch press, last LED on

d) First switch press, last LED off

Task3.LCD

a) Character &string display on LCD,

b) SW1-Display strring1 on first line of LCD,

c) SW2-Display strring1 on first line of LCD, SW2

Task4.UART

a) Echo Program,

b) Take command from PC & glow corresponding LED,

c) Press Switch & display switch number on PC,

d) Display data received by UART on LCD

Task5. TRIAC

a) 220V AC bulb switch on/off

b) 220V AC fan speed control with fixed step size

Task6.ADC

a) Raw ADC value display on LCE

b) Raw ADC value display on Hyper Terminal

c) Engineering unit conversion and display on LCD

d) Engineering unit conversion and display on Hyper Terminal

e) Limit checking for temperature value and switching on fan using triac

f) Limit checking for ambient light value and switching on light using triac.

Task7.DAC

a) Fixed step incremented DAC, output seen on multi-meter

b) DAC input value received from Hyper Terminal

c) DAC input value taken from switches

Task8.DC motor

a) DC motor control-CW, CCW and stop using switches

b) DC motor control- CW, CCW and stop using commands received from Hyper Terminal

Task9. ZigBee

a) Receive data on ZigBee from PC ZigBee dongle and display data on LEDs

b) Receive data on ZigBee from PC ZigBee dongle and display data on LCD

c) Read ADC and transmit data using ZigBee

d) TRIAC based control of fan and light using data received on ZigBee

Task10. RF 433MHz

a) Receive data on RF from another kit with RF transmitter. Connect PCs to both kits. Type in data in

Hyper Terminal of Transmitter kit & see on Hyper Terminal of Receiver kit.

b) Read switches on transmitter kit, send their status on RF to receiver kit and control motor using

switch status.

Task11.Bluetooth

a) Transfer data to PC using Bluelink.

b) Receive data from PC using Bluelink & display on LCD

c) Transfer data from mobile phone (using a J2ME app) and receive using Blue link and control motor

operation.

d) Transfer data from mobile phone (using a J2ME app) and receive using Bluelink and control electrical

appliance operation.

Task12. Ethernet

a) Transfer data to PC using WIZI05SR and display on Hyper Terminal.

b) Implement an embedded web server.

c) Task13. RTC

d) Read and display RTC data on LCD.

e) Read and display RTC data on Hyper Terminal.

f) Set RTC using Hyper terminal and display data on Hyper Terminal.

g) Implement an Event Logger with Time Stamp display.

Task14. SD card

a) Transfer data to PC, store on SD-card and retrieve it back (block transfer)

b) Implement FAT file system on SD card.

c) Implement data acquisition system and store data in a CSV file on SD card with time stamp.

Note: A minimum of 10 (Ten) experiments must be performed and recorded by the candidate to attain

eligibility for Practical Examination.

Lab methodologies:

 Assignments

 Lab experiments with Arduino software

Signature of HOD Signature of faculty

Date: Date:

COURSE OUTCOME AND PROGRAM OUTCOME MAPPING

P-Outcomes

C-Outcomes

a

b

c

d

e

f

g

h

i

j

k

l

1 X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X

6 X X X X X X

7 X X X X X

MICROCONTROLLERS

CO – Cognitive Level Mapping

C 1 2 3 4 5 6

CO-1 X X

CO-2 X X

CO-3 X X

CO-4 X X

CO-5 X X

CO-6 X X X

CO-7 X X

1-REMEMBER

2-UNDERSTAND

3-APPLY

4-ANALYSE

5-EVALUATE

6-CREATE

EVALUATION STRATEGY

Academic Year : 2018-19

Semester : I

Name of the Program : B. Tech Year: III Section: A

Course/Subject : MICROCONTROLLERS Course Code: GR15A2055

Name of the Faculty : P Prasanth Kumar Dept.: ……EEE…………

Designation : ASST PROFESSOR

1. TARGET:

a) Percentage for pass: 100%

b) Percentage of class: 100%

2. COURSE PLAN & CONTENT DELIVERY

 PPT presentation of the Lectures

 Solving exercise programs

 Model questions

3. METHOD OF EVALUATION

1. Continuous Assessment Examinations (CAE-I, CAE-II)

2. Assignments

3. Quiz

4. Class tests

5. Semester/End Examination

Signature of HOD Signature of faculty

Date: Date:

B.Tech EEE IIIYEAR I SEM RESULT ANALYSIS OF 2016-2020 BATCH

ACADEMIC YEAR 2018-2019 TOTAL. NO. OF STUDENTS REGISTERED = 142

Subj

ect

Total

No. of

students

appeared

No. of

students

passed

No. of

students

failed

Grade Points

<
5

5

6

7

8

9

10

Pass

percentag

e

MC 142 116 26 07 13 15 20 32 27 02 81.69%

MC

Lab
142 141 01 00 01 00 00 09 26 105 99.29%

PTS 142 128 14 01 12 12 14 30 34 25 90.14%

EMI 142 128 14 08 11 08 12 32 31 26 90.14%

PE 142 135 07 03 08 11 08 27 37 41 95.07%

SMI

Lab
142 140 02 06 10 02 04 12 17 89 98.59%

PE

Lab
142 140 02 00 01 02 07 27 31 72 98.59%

SW

E
142 125 17 06 11 16 09 44 29 10 88.02%

 Overall pass (passed in all subjects) = 107/142 (75.35%)

 Faculty

Power Transmission System V Vijaya Rama Raju, M Prashanth

Microcontrollers P Prashanth Kumar

Electrical Measurements&

Instrumentation
U Vijaya Lakshmi

Power Electronics Dr T Suresh Kumar,D Karuna Kumar

Solar and Wind Energy Systems P Sri Vidya Devi /Dr J Praveen

Sensors/Measurements&

Instrumentation Lab
P Srividya Devi/U Vijaya Lakshmi/P Sirisha

Power Electronics Lab Dr T Suresh Kumar/Syed Sarfaraz Nawaz/M Rekha

Microcontrollers Lab R Anil Kumar/MN Sandhya Rani

ARREARS POSITION – CURRENT YEAR

Descript

ion
All pass

One

Arrear

Two

Arrears

Three

Arrears

More than Three

Arrears
% of pass

142 107 10 16 03 06 75.35%

Performance overall Class Three Toppers

ROLL NO. NAME PERCENTAGE(SGPA)
16241A0259

VIPPARTHI SOWMYA 10

16241A0274

16241A0290

17245A0205

17245A0214

17245A0221

INDURI PAVANI

MANGANAPALLY ROOPA

CHILUKA PRANAVI

K VAISHNAVI

P SWATHI

9.84

16241A0257

UNDETY MOUNIKA 9.72

 HOD,EEE

Name of the Instructor P Prasanth Kumar

Faculty ID 1055

Branch EEE

Class and Semester/Section III / I / B

Academic Year 2018 19

Subject Title MC Lab

Total No. of Responses/class strength 52/71

3.1956521739130435

3.1956521739130435

3.2826086956521738

3.152173913043478

3.1956521739130435

3.2173913043478262

3.2391304347826089

3.1956521739130435

3.152173913043478

3.2173913043478262

GOKARAJU RANGARAJU
Institute of Engineering and Technology

(Autonomous)

MICROCONTROLLERS LABORATORY

Manual

Name

Reg No

Branch

Year and Section

GOKARAJU RANGARAJU

Institute of Engineering and Technology

(Autonomous)

CERTIFICATE

This is to certify that it is a bonafide record of practical work done by Mr./Ms.

___________________________, Reg No. __________________ in the

“MICROCONTROLLERS LABORATORY” in I-Semester of III-year during

20__ to 20__.

Internal Examiner

Signature

External Examiner

Signature

Head of the Department

Signature

MICROCONTROLLERS LABORATORY

Index

Exp

No.
Experiment Name

Page

No.
Date Signature

1 Introduction to Arduino 1

2 Arduino Programming 11

3 LEDs and Switches 21

4 LCD 25

5 Serial Communication 31

6 Reading Sensors using Internal ADC 33

7 Device Control 37

8 Motor Control 41

9 Bluetooth 45

10 ZigBee 47

11 Real Time Clock (RTC) 49

12 Color LCD 57

 Additional Experiments

13 AVR Programming 61

14 Digital I/O 62

15 Programs 64

16 Serial Communication 66

17 Internal ADC 71

18 Interrupts 74

19 Timers 77

Microcontrollers Lab

GRIET-EEE

Introduction to Arduino

The lab will be based on the Arduino Uno. The Arduino Uno is a microcontroller board

based on the ATmega328. It has 14 digital input/output pins (of which 6 can be used as PWM

outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP

header, and a reset button. It contains everything needed to support the microcontroller; simply

connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get

started.

Digital pins

(0 to 13)

USB

Connector

Pin 0 – RX

Pin 1 - TX

Power jack

Power supplies Analog pins

(A0 to A5)

1

Microcontrollers Lab

GRIET-EEE

Features of Uno board

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by boot loader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Power

The Arduino Uno can be powered via the USB connection or with an external power

supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or

battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's

power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER

connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than

7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using

more than 12V, the voltage regulator may overheat and damage the board. The recommended

range is 7 to 12 volts.

2

Microcontrollers Lab

GRIET-EEE

The power pins are as follows:

• VIN. The input voltage to the Arduino board when it's using an external power source (as

opposed to 5 volts from the USB connection or other regulated power source). You can supply

voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

• 5V.This pin outputs a regulated 5V from the regulator on the board. The board can be supplied

with power either from the DC power jack (7 - 12V), the USB connector (5V), or the VIN pin of

the board (7-12V).

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.

• GND. Ground pins.

Each of the 14 digital pins (pins 0 to 13) on the Uno can be used as an input or output, using

pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can

provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by

default) . In addition, some pins have specialized functions:

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data.

These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL

Serial chip.

• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a

low value, a rising or falling edge, or a change in value.

• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication using the SPI library.

• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH

value, the LED is on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of

resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though it

is possible to change the upper end of their range using the AREF pin and the analogReference()

function.

Additionally, some pins have specialized functionality:

• TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the Wire

library.

3

Microcontrollers Lab

GRIET-EEE

ATmega168/328-Arduino Pin Mapping

4

Microcontrollers Lab

GRIET-EEE

Arduino Programming

Click on the Arduino executable which has the Arduino logo

The following screen comes up:

The programs written for Arduino are called sketches. For the sketch to work on the Arduino

Uno, there are two hardware related settings need to be done in the Arduino IDE –

• Board

• Serial Port

5

Microcontrollers Lab

GRIET-EEE

For selecting the board, go to the Tools tab and select Board. From the menu select Uno.

When you connect your Arduino Uno to the USB port of your laptop, it will be mapped

as a serial port.

6

Microcontrollers Lab

GRIET-EEE

To know the serial port to which your Arduino is mapped, follow the following procedure:

Right click on My Computer

Select the Manage option

In the pop up screen for Computer Management, select the Device Manager

Expand the Ports item; the Arduino Uno will appear as one of the drop down items

7

Microcontrollers Lab

GRIET-EEE

In the Arduino IDE, select the Serial Port as the port to which the Arduino is mapped.

8

Microcontrollers Lab

GRIET-EEE

The basic structure of the Arduino sketch is fairly simple and has two required functions:

void setup()

{

statements;

}

void loop()

{

statements;

}

Where setup() is the preparation, loop() is the execution. Both functions are required for

the program to work. The setup function should follow the declaration of any variables at the

very beginning of the program. It is the first function to run in the program, is run only once, and

is used to set pin Mode or initialize serial communication.

The loop function follows next and includes the code to be executed continuously –

reading inputs, triggering outputs, etc. This function is the core of all Arduino programs and does

the bulk of the work.

setup()

The setup() function is called once when your program starts. Use it to initialize pin

modes, or begin serial. It must be included in a program even if there are no statements to run.

void setup()

{

pinMode(pin, OUTPUT); // sets the 'pin' as output

}

loop()

After calling the setup() function, the loop() function does precisely what its name suggests, and

loops consecutively, allowing the program to change, respond, and control the Arduino board.

9

Microcontrollers Lab

GRIET-EEE

void loop()

{

digitalWrite(pin, HIGH); // turns 'pin' on

delay(1000); // pauses for one second

digitalWrite(pin, LOW); // turns 'pin' off

delay(1000); // pauses for one second

}

pinMode(pin, mode)

Used in void setup() to configure a specified pin to behave either as an INPUT or an

OUTPUT.

pinMode(pin, OUTPUT); // sets ‘pin’ to output

There are also convenient pullup resistors built into the Atmega chip that can be accessed from

software. These built-in pullup resistors are accessed in the following manner:

pinMode(pin, INPUT); // set ‘pin’ to input

digitalWrite(pin, HIGH); // turn on pullup resistors

Pullup resistors would normally be used for connecting inputs like switches. Notice in the above

example it does not convert pin to an output, it is merely a method for activating the internal

pull-ups.

Pins configured as OUTPUT can provide 40 mA (milliamps) of current to other

devices/circuits. This is enough current to brightly light up an LED (don't forget the series

resistor), but not enough current to run most relays, solenoids, or motors.

Short circuits on Arduino pins and excessive current can damage or destroy the output

pin, or damage the entire Atmega chip. It is often a good idea to connect an OUTPUT pin to an

external device in series with a 470Ω or 1KΩ resistor.

digitalRead(pin)

Reads the value from a specified digital pin with the result either HIGH or LOW. The pin can be

specified as either a variable or constant (0-13).

value = digitalRead(Pin); // sets 'value' equal to the input pin

10

Microcontrollers Lab

GRIET-EEE

digitalWrite(pin, value)

Outputs either logic level HIGH or LOW at (turns on or off) a specified digital pin. The

pin can be specified as either a variable or constant (0-13).

digitalWrite(pin, HIGH); // sets 'pin' to high

The following example reads a pushbutton connected to a digital input and turns on an LED

connected to a digital output when the button has been pressed:

int led = 13; // connect LED to pin 13

int pin = 7; // connect pushbutton to pin 7

int value = 0; // variable to store the read value

void setup()

{

pinMode(led, OUTPUT); // sets pin 13 as output

pinMode(pin, INPUT); // sets pin 7 as input

}

void loop()

{

value = digitalRead(pin); // sets 'value' equal to the input pin

digitalWrite(led, value); // sets 'led' to the button's value

}

analogRead(pin)

Reads the value from a specified analog pin with a 10-bit resolution. This function only

works on the analog in pins (0-5). The resulting integer values range from 0 to 1023.

value = analogRead(pin); // sets 'value' equal to 'pin'

Note: Analog pins unlike digital ones, do not need to be first declared as INPUT or OUTPUT.

11

Microcontrollers Lab

GRIET-EEE

analogWrite(pin, value)

Writes a pseudo-analog value using hardware enabled pulse width modulation (PWM) to

an output pin marked PWM. On Uno, this function works on pins 3, 5, 6, 9, 10, and 11. The

value can be specified as a variable or constant with a value from 0-255.

analogWrite(pin, value); // writes 'value' to analog 'pin'

A value of 0 generates a steady 0 volts output at the specified pin; a value of 255

generates a steady 5 volts output at the specified pin. For values in between 0 and 255, the pin

rapidly alternates between 0 and 5 volts - the higher the value, the more often the pin is HIGH (5

volts). For example, a value of 64 will be 0 volts three-quarters of the time, and 5 volts one

quarter of the time; a value of 128 will be at 0 half the time and 255 half the time; and a value of

192 will be 0 volts one quarter of the time and 5 volts three-quarters of the time.

Because this is a hardware function, the pin will generate a steady wave after a call to

analogWrite in the background until the next call to analogWrite (or a call to digitalRead or

digitalWrite on the same pin).

Note: Analog pins unlike digital ones do not need to be first declared as INPUT or OUTPUT.

The following example reads an analog value from an analog input pin, converts the

value by dividing by 4, and outputs a PWM signal on a PWM pin:

int led = 10; // LED with 220 resistor on pin 10

int pin = A0; // potentiometer on analog pin 0

int value; // value for reading

void setup(){} // no setup needed

void loop()

{

value = analogRead(pin); // sets 'value' equal to 'pin'

value /= 4; // converts 0-1023 to 0-255

analogWrite(led, value); // outputs PWM signal to led

}

12

Microcontrollers Lab

GRIET-EEE

delay(ms)

Pauses a program for the amount of time as specified in milliseconds, where 1000 equals

1 second.

delay(1000); // waits for one second

millis()

Returns the number of milliseconds since the Arduino board began running the current program

as an unsigned long value.

value = millis(); // sets ‘value’ equal to millis()

Note: This number will overflow (reset back to zero), after approximately 9 hours.

Serial.begin(rate)

Opens serial port and sets the baud rate for serial data transmission. The typical baud rate for

communicating with the computer is 9600 although other speeds are supported.

void setup()

{

Serial.begin(9600); // opens serial port

} // sets data rate to 9600 bps

Note: When using serial communication, digital pins 0 (RX) and 1 (TX) cannot be used at the

same time.

Serial.println(data)

Prints data to the serial port, followed by an automatic carriage return and line feed. This

command takes the same form as Serial.print(), but is easier for reading data on the Serial

Monitor.

Serial.println(analogValue); // sends the value of

// 'analogValue'

Note: For more information on the various permutations of the Serial.println() and Serial.print()

functions please refer to the Arduino website.

13

Microcontrollers Lab

GRIET-EEE

The following simple example takes a reading from analog pin0 and sends this data to the

computer every 1 second.

void setup()

{

Serial.begin(9600); // sets serial to 9600bps

}

void loop()

{

Serial.println(analogRead(A0)); // sends analog value

delay(1000); // pauses for 1 second

}

Verify button Upload button Serial Monitor

After entering your program, click on the Verify button for compilation. If there are

errors, the line numbers of the errors are shown in the bottom window. Correct the errors. After

successful verification, upload your program to the Arduino using the Upload button. A common

cause for failure in uploading is that your Arduino is not connected to a different COM port than

the one shown in the Arduino IDE.

14

Microcontrollers Lab

GRIET-EEE

Introduction

LEDs and Switches

The GRIET LED and switches shield has 6 LEDs and 6 switches. The cathodes of the

LEDs are grounded and the anodes are connected to Arduino Uno pins through resistors. The

switches when pressed will ground the connected Uno pins. The Uno pins connected to the

switches should be made inputs with pull-ups enabled. The required 5V supply and ground for

the shield are transferred from the Arduino Uno base board

Pin-out

LEDs and switches Arduino Uno pins ATmega328 pin

LED1 8 PB0

LED2 9 PB1

LED3 10 PB2

LED4 11 PB3

LED5 12 PB4

LED6 13 PB5

S1 2 PD2

S2 3 PD3

S3 4 PD4

S4 5 PD5

S5 6 PD6

S6 7 PD7

15

Microcontrollers Lab

GRIET-EEE

Schematic

16

Microcontrollers Lab

GRIET-EEE

Bill of Materials

Part Value Device Package Library Sheet

IC1 Arduino
Shield

ARDUINO2009_PIN_22 ARDUINO2009_2 arduino01 1

LED1 LEDCHIPLED_1206 CHIPLED_1206 led 1

LED2 LEDCHIPLED_1206 CHIPLED_1206 led 1

LED3 LEDCHIPLED_1206 CHIPLED_1206 led 1

LED4 LEDCHIPLED_1206 CHIPLED_1206 led 1

LED5 LEDCHIPLED_1206 CHIPLED_1206 led 1

LED6 LEDCHIPLED_1206 CHIPLED_1206 led 1

R1 330R R-US_R1206 R1206 rcl 1

R2 330R R-US_R1206 R1206 rcl 1

R3 330R R-US_R1206 R1206 rcl 1

R4 330R R-US_R1206 R1206 rcl 1

R5 330R R-US_R1206 R1206 rcl 1

R6 330R R-US_R1206 R1206 rcl 1

S1 10XX
Tactile

10-XX B3F-10XX switch-
omron

1

S1 10XX
Tactile

10-XX B3F-10XX switch-
omron

1

S1 10XX
Tactile

10-XX B3F-10XX switch-
omron

1

S1 10XX
Tactile

10-XX B3F-10XX switch-
omron

1

S1 10XX
Tactile

10-XX B3F-10XX switch-
omron

1

S1 10XX
Tactile

10-XX B3F-10XX switch-
omron

1

17

Microcontrollers Lab

GRIET-EEE

Arduino program

The program will read the status of one switch and use it to control an LED – LED is on

when the switch is pressed and off when the switch is not pressed. LED1 and SW1 are used in

the program

int LED1 = 8;

int S1 = 2;

void setup()

{

pinMode(LED1,OUTPUT);

pinMode(S1,INPUT_PULLUP); }

void loop()

{

}

Exercises

int status;

status = digitalRead(S1);

if(status == LOW)

digitalWrite(LED1,HIGH);

else

digitalWrite(LED1,LOW);

1. Write an Arduino program to control LED6 using switch SW6

2. Write an Arduino program to control the six LEDs using the six corresponding switches

18

Microcontrollers Lab

GRIET-EEE

Introduction

LCD

The GRIET LCD shield has the following resources

• 2x16 LCD

• LM35 temperature sensor

• LDR(Light Dependent Resistor)

• 2 LEDs

The 2x16 LCD uses the 4-bit interface. The RD/WR pin of the LCD is grounded so that write

is permanently enabled. There is a potentiometer for adjusting the contrast. Adjust the pot till

you see a strip of dark blocks in the first line of the LCD. The LM35 is connected to the A5

analog input pin of Uno. The LDR forms part of a potential divider circuit whose output is given

to A4 analog input pin of Uno.

Pin-out

LCD, sensors & LEDs Arduino Uno pins ATmega328 pin

LCD Enable 11 PB3

LCD Register Select(RS) 12 PB4

DB4 4 PD4

DB5 5 PD5

DB6 6 PD6

DB7 7 PD7

LM35 A5 PC5

LDR A4 PC4

LED1 8 PB0

LED2 10 PB2

19

Microcontrollers Lab

GRIET-EEE

W

0

Schematic

Bill of Materials

Part Value Device Package Library Sheet

IC1 Arduino Shield ARDUINO2009_PIN_22 ARDUINO2 09_2 arduino01 1

LCD LCD-16X2

LCD-16X2

LCD-16X2
SparkFun 1

LDR LDR LDR LDR BHolder 1

LED1

LEDCHIPLED_1206

CHIPLED_1206
led 1

LED2 LEDCHIPLED_1206 CHIPLED_1206 led 1

LM35 LM35CZ

LM35CZ

TO127P254X495-3P
LM35 1

R1 5K R-TRIMM3296 RTRIM3296W rcl 1

R2

R-US_0204/7

0204/7
rcl 1

R3 330R R-US_R1204/7 R1204/7 rcl 1

R4 330R

R-US_R1204/7

R1204/7
rcl 1

20

Microcontrollers Lab

GRIET-EEE

Arduino program

The program is to write “Hello World” in the first line of the LCD. We use the LiquidCrystal.h

library in the program.

#include <LiquidCrystal.h>

/* RS 12

E 11

D4 4

D5 5

D6 6

D7 7 */

LiquidCrystal lcd(12,11,4,5,6,7);

void setup()

{

lcd.begin(16,2);

lcd.print(" hello, world");

}

void loop()

{

}

21

Microcontrollers Lab

GRIET-EEE

LCD library functions

LiquidCrystal()

Description

Creates a variable of type LiquidCrystal. The display can be controlled using 4 or 8 data lines. If

the former, omit the pin numbers for d0 to d3 and leave those lines unconnected. The RW pin

can be tied to ground instead of connected to a pin on the Arduino; if so, omit it from this

function's parameters.

Syntax

LiquidCrystal(rs, enable, d4, d5, d6, d7) LiquidCrystal(rs,

rw, enable, d4, d5, d6, d7) LiquidCrystal(rs, enable, d0, d1,

d2, d3, d4, d5, d6, d7) LiquidCrystal(rs, rw, enable, d0, d1,

d2, d3, d4, d5, d6, d7)

Parameters

rs: the number of the Arduino pin that is connected to the RS pin on the LCD

rw: the number of the Arduino pin that is connected to the RW pin on the LCD (optional)

enable: the number of the Arduino pin that is connected to the enable pin on the LCD

d0, d1, d2, d3, d4, d5, d6, d7: the numbers of the Arduino pins that are connected to the

corresponding data pins on the LCD. d0, d1, d2, and d3 are optional; if omitted, the LCD will be

controlled using only the four data lines (d4, d5, d6, d7).

22

Microcontrollers Lab

GRIET-EEE

begin()

Description

Specifies the dimensions (width and height) of the display.

Syntax

lcd.begin(cols, rows)

Parameters

lcd: a variable of type LiquidCrystal

cols: the number of columns that the display has

rows: the number of rows that the display has

setCursor()

Description

Position the LCD cursor; that is, set the location at which subsequent text written to the LCD will

be displayed.

Syntax

lcd.setCursor(col, row)

Parameters

lcd: a variable of type LiquidCrystal

col: the column at which to position the cursor (with 0 being the first column)

row: the row at which to position the cursor (with 0 being the first row)

Exercise

1. Write an Arduino program to write your name in the first line of the LCD

2. Write an Arduino program to write your name in the first line of the LCD and your roll

number in the second line

23

Microcontrollers Lab

GRIET-EEE

24

Microcontrollers Lab

GRIET-EEE

Introduction

Serial communication

The Arduino Uno board is capable of serial communication used for communication

between the Arduino board and a computer or other devices. The Uno has a single serial port

(also known as a UART or USART): Serial. It communicates on digital pins 0 (RX) and 1 (TX)

as well as with the computer via USB. Thus, if you use these functions, you cannot also use pins

0 and 1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate with an

Arduino board. Click the serial monitor button in the toolbar and select the same baud rate used

in the call to begin().

Functions

begin()

Description

Sets the data rate in bits per second (baud) for serial data transmission. For communicating with

the computer, use one of these rates: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400,

57600, or 115200.

Syntax

Serial.begin(speed)

println()

Description

Prints data to the serial port as human-readable ASCII text followed by a carriage return

character (ASCII 13, or '\r') and a newline character (ASCII 10, or '\n'). This command takes the

same forms as Serial.print().

25

Microcontrollers Lab

GRIET-EEE

Syntax

Serial.println(val)

Serial.println(val, format)

Parameters

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places (for

floating point types)

Returns

byte

println() will return the number of bytes written, though reading that number is optional

Example:

void setup() {

// open the serial port at 9600 bps

Serial.begin(9600);

}

void loop() {

println(“Hello World”);

delay(1000);

}

Exercises

1. Write an Arduino program to write your name

2. Write an Arduino program to write your name in the first line and your roll number in the

second line

3. Write an echo program to echo whatever is sent from the computer back to the computer

26

Microcontrollers Lab

GRIET-EEE

Introduction

Reading sensors using internal ADC

The GRIET LCD shield which has a temperature sensor and an ambient light sensor is

used in this experiment. The temperature sensor is connected to pin A5 and the ambient light

sensor is connected to pin A4 of Uno. To use the internal ADC, the function AnalogRead() is

used.

Functions

analogRead()

Description

Reads the value from the specified analog pin. The Arduino Uno board contains a 6

channel, 10-bit analog to digital converter. This means that it will map input voltages between 0

and 5 volts into integer values between 0 and 1023. This yields a resolution between readings of:

5 volts / 1024 units or, .0049 volts (4.9 mV) per unit.

It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum

reading rate is about 10,000 times a second.

Syntax

analogRead(pin)

Parameters

pin: the number of the analog input pin to read from (A0 to A5 on Uno)

Returns

int (0 to 1023)

27

Microcontrollers Lab

GRIET-EEE

W

0

Schematic

Part Value Device Package Library Sheet

IC1 Arduino Shield ARDUINO2009_PIN_22 ARDUINO2 09_2 arduino01 1

LCD LCD-16X2

LCD-16X2

LCD-16X2
SparkFun 1

LDR LDR LDR LDR BHolder 1

LED1

LEDCHIPLED_1206

CHIPLED_1206
led 1

LED2 LEDCHIPLED_1206 CHIPLED_1206 led 1

LM35 LM35CZ

LM35CZ

TO127P254X495-3P
LM35 1

R1 5K R-TRIMM3296 RTRIM3296W rcl 1

R2

R-US_0204/7

0204/7
rcl 1

R3 330R R-US_R1204/7 R1204/7 rcl 1

R4 330R

R-US_R1204/7

R1204/7
rcl 1

28

Microcontrollers Lab

GRIET-EEE

Arduino program

int val = 0; // variable to store the value read

void setup()

{

Serial.begin(9600); // setup serial

}

void loop()

{

val = analogRead(A5); // read the input pin

Serial.println(val); // debug value

}

Exercise

1. Write an Arduino program to read the LM35 sensor, convert the value into temperature

and display it on the serial monitor

2. Write an Arduino program to read the LM35 sensor, convert the value into temperature

and display it on the LCD

3. Write an Arduino program to read the LDR sensor and display it on the serial monitor.

Switch on LED1 when light is high and switch off the LED when light is low

29

Microcontrollers Lab

GRIET-EEE

30

Microcontrollers Lab

GRIET-EEE

1 A

m

e

A

m

c

o

Introduction

Device Control

The GRIET Triac shield is used for device control. Two devices can be controlled by the

Triac shield. Each channel will have an Arduino pin connected to an opto-isolator and a triac.

The main purpose of an opto-isolator is to prevent high voltages on one side of the circuit from

damaging components on the other side.

Schematic diagram of an opto-isolator showing sour e

of light (LED) on the left, dielectric barrier in the center,

and sensor (phototransistor) on the right.

The triac is a three-terminal semiconductor device for controlling current. It is an ideal

device to use for AC switching applications because it can control the current flow over both

halves of an alternating cycle.

On the TRIAC sy bol there are three ter inals . These

are the Gate and two other terminals. These other

TRIAC terminals are often ref rred to as an "Anode" r

"Main Terminal". As the TRI C has two of these they

are labelled either Anode 1 and Anode 2 or Main

Terminal, MT1 and MT2.

Pin-out

Device Arduino Uno pins ATmega328 pin

Device 4 PC4

Device2 A5 PC5

31

Microcontrollers Lab

GRIET-EEE

Schematic

Phase and neutral of 220V AC mains are connected to terminals X1-1 and X1-2 Two AC

operated devices are connected to X2-1, X2-2 and X3-1,X3-2 respectively

32

Microcontrollers Lab

GRIET-EEE

Bill of Materials

Part Value Device Package Library Sheet

IC1 Arduino Shield ARDUINO2009_PIN_22 ARDUINO2009_2 arduino01 1

OK1 MOC3032M MOC3032M DIL06 optocoupler 1

OK2 MOC3032M MOC3032M DIL06 optocoupler 1

R1 10K R-US_0204/7 0204/7 rcl 1

R2 10K R-US_0204/7 0204/7 rcl 1

R3 10K R-US_R1204/7 0204/7 rcl 1

R4 10K R-US_R1204/7 0204/7 rcl 1

T1 BT138-V BT138-V TO220BV triac 1

T2 BT138-V BT138-V TO220BV triac 1

X1 AK500/2 AK500/2 con-ptr500 1

X2 AK500/2 AK500/2 con-ptr500 1

X3 AK500/2 AK500/2 con-ptr500 1

33

Microcontrollers Lab

GRIET-EEE

Arduino program

void setup()

{

pinMode(A4,OUTPUT);

pinMode(A5,OUTPUT);

}

void setup()

{

}

Exercises

digitalWrite(A4,LOW);

digitalWrite(A5,LOW);

delay(1000);

digitalWrite(A4,HIGH);

digitalWrite(A5,HIGH);

delay(1000);

1. Write an Arduino program to take input from the serial port and perform the following:

Input character from serial port Control

action

‘A’ Device 1 ON

‘B’ Device 1 OFF

‘C’ Device 2 ON

‘D’ Device 2 OFF

2. Write an Arduino program to read the LDR sensor in the LCD shield, apply a threshold

and switch on an AC operated bulb using the Triac shield when the ambient light is low

and turn off the bulb when the ambient light is high.

34

Microcontrollers Lab

GRIET-EEE

w

a

D

d

w

Introduction

Motor control

The GRIET Motor shield uses a dual H-bridge IC, L293D to control two 5V DC motors.

The Enable and Input pins are connecte to

Arduino pins. The Enable pins are connected to

PWM en bled pins while the Input pins are

connected to digital pins.

Outputs 1 & 2 control one DC motor hile

TruthTable

outputs 3 & 4 control the second C motor

Enable Input1 Input2 Motor action

H H L Clock ise rotation

H L H Counter-clockwise rotation

 H L L Stop

H H H Stop

The voltage applied to the Enable pin can be controlled using PWM to achieve speed

control of the DC motor

35

Microcontrollers Lab

GRIET-EEE

Pin-out

L293D pins Arduino Uno pins ATmega328 pin

IN1 8 PB0

IN2 9 PB1

EN1,2 5 PD5

IN3 10 PB2

IN4 11 PB3

EN3,4 6 PD6

Schematic

Power supply

The power supply for the motor is derived from a DC-DC module. The input for the module can

be 2 AA batteries in series, the output will be 5V. The module can supply up to 300mA of

current.

36

Microcontrollers Lab

GRIET-EEE

Bill of Materials

Part Value Device Package Library Sheet

BAT 2AAPCB 2AAPCB 2AAPCB BHolder 1

DC-DC MAX756MODULE MAX756MODULE MAX756MODULE BHolder 1

IC1 Arduino Shield ARDUINO2009_PIN_22 ARDUINO2009_2 arduino01 1

LED1 1206Red LEDCHIPLED_1206 CHIPLED_1206 led 1

LED2 1206Red LEDCHIPLED_1206 CHIPLED_1206 led 1

R1 330R R-US_R1206 R1206 rcl 1

R2 330R R-US_R1206 R1206 rcl 1

S1 255SB 255SB switch 1

X1 AK500/2 AK500/2 con-

ptr500

1

X2 AK500/2 AK500/2 con-

ptr500

1

Arduino program

void setup()

{

pinMode(5,OUTPUT);

pinMode(6,OUTPUT);

pinMode(8,OUTPUT);

pinMode(9,OUTPUT);

pinMode(10,OUTPUT);

pinMode(11,OUTPUT);

digitalWrite(5,HIGH);// Make EN1,2 HIGH

digitalWrite (6,HIGH);// Make EN3,4 HIGH

}

void loop()

{

// Clockwise rotation

37

Microcontrollers Lab

GRIET-EEE

// Stop

digitalWrite (8,HIGH);

digitalWrite (9,LOW);

delay(3000);

digitalWrite (8,LOW);

digitalWrite (9,LOW);

delay(1000);

// Anti-Clockwise rotation

digitalWrite (8,LOW);

digitalWrite (9,HIGH);

delay(3000);

// Stop

}

Exercises

digitalWrite (8,LOW);

digitalWrite (9,LOW);

delay(1000);

1. Write an Arduino program to vary the speed of the motor from standstill to full speed in 5

seconds

2. Take the following commands from the Serial Monitor and control the motor as per table

given below

Command Motor action

‘S’ Stop

‘C’ Clockwise Rotation

‘A’ Anti-clockwise rotation

38

Microcontrollers Lab

GRIET-EEE

Introduction

Bluetooth

The GRIET BlueTooth shield uses the BlueLink BlueTooth module which has

BlueTooth on one side and serial interface on the other. It has five pins : VCC, GND, TX, RX

and RESET. The TX pin of BlueLink is connected to RX of Arduino and RX connected to TX of

Arduino. Data received on BlueTooth is transferred to Arduino serial port and data sent from the

Arduino serial port is sent over BlueTooth. These data transfers between the Arduino and

BlueLink take place at a baud rate of 9600.

Device discovery & Pairing

Enable BlueTooth on your laptop. Discover the BlueTooth devices in your vicinity.

BlueLink will appear in that list. When you try to connect to BlueLink you will be prompted to

give the passkey. The passkey for BlueLink is 8888. When BlueLink is connected, it will get

mapped as a COM port in the PC. Open the COM port in a terminal program such as

Hyperterminal.

Pin-out

BlueLink pins Arduino Uno pins ATmega328 pin

TX 0(RX) PD0

RX 1(TX) PD1

39

Microcontrollers Lab

GRIET-EEE

B

C

H

U

E

Bill of Materials

Part Value Device Package Library Sheet

 LUETOOT MODULE RLBTMODULE RLBTMODULE RLBTMODUL BHolder 1

C1 10uF CPOL-USE2.5-5 E2,5-5 rcl 1

 2 1uF C-US 025-025X05 0 C- S025- rcl 1

 025 X050

IC1 Arduino Shield ARDUINO2009_PIN_22 ARDUINO2009_2 arduino01 1

Arduino program

void setup()

{

Serial.begin(9600);

}

void loop()

{

Serial.println(“A”);

delay(1000); }

40

Microcontrollers Lab

GRIET-EEE

Introduction

ZigBee

The GRIET ZigBee shield allows the Arduino board to communicate wirelessly using

the XBee module. The XBee Series 2 module from Digi has a range of 100 feet indoors and

works at 2.4GHz. For establishing wireless networking using the Series 2 modules, there should

be a ZigBee co-ordinator module and one or more ZigBee router/end-point modules.

The GRIET ZigBee dongle is made the co-ordinator by loading the co-ordinator

firmware in its XBee. Router firmware is loaded in the XBee of the ZigBee shield. X-CTU

software from Digi is used for loading the firmware as well as for setting module parameters.

The Pan ID of both modules should be the same. Note down the SH and SL parameters of the

XBee co-ordinator module and set the DH and DL of the router module equal to SH and SL

respectively.

Pin-out

XBee pins Arduino Uno pins ATmega328 pin

Dout 0(RX) PD0

Din 1(TX) PD1

Schematic

41

Microcontrollers Lab

GRIET-EEE

Bill of Materials

Part Value Device Package Library Sheet

BAT 2AAPCB 2AAPCB 2AAPCB BHolder 1

DC-DC MAX756MODULE MAX756MODULE MAX756MODULE BHolder 1

IC1 Arduino Shield ARDUINO2009_PIN_22 ARDUINO2009_2 arduino01 1

JP1 1x2 Pin Head PINHD-1X2 1X2 pinhead 1

LED1 1206Red LEDCHIPLED_1206 CHIPLED_1206 led 1

R1 330R R-US_R1206 R1206 rcl 1

S1 255SB 255SB switch 1

XBEE XBEE-1B1 XBEE-1B1 XBEE-1 SparkFun 1

Power supply

The ZigBee shield has a DC-DC converter module. 2 AA batteries can provide the input

for the module, the output will be 5V. The module can supply upto 300mA. The 5V of the DC-DC

module is given to the Vin of the Arduino board, so that a battery powered wireless node can be

built. The Xbee is powered by 3.3V supply generated on the Arduino board .

Arduino program

void setup()

{

Serial.begin(9600);}

void loop()

{ Serial.println(“A”);

delay(1000);}

Connect the GRIET ZigBee dongle to your laptop. Load the FTDI drivers and the

dongle will get mapped as a COM port in your laptop. The data transferred from the Arduino

ZigBee shield can be seen in your laptop by using a Terminal program such as Hyperterminal.

You can also use Hyperterminal to transmit data from your laptop via ZigBee to the Arduino.

42

Microcontrollers Lab

GRIET-EEE

Introduction

Real-Time Clock (RTC)

The GRIET RTC shield has the DS1307 RTC chip from Dallas Semiconductor. The

clock/calendar on the chip provides seconds, minutes, hours, day, date, month and year

information. Address and data are transferred serially via a 2-wire bi-directional bus, the I2C

bus. Arduino has a library called Wire.h that handles the details of the I2C protocol. The Wire

library assumes that the SDA and SCL pins of the Arduino (A4 and A5) are used for the I2C

communication. The RTC shield uses these two pins for the interface between Arduino and the

DS1307 RTC chip. The DS1307 uses an external 32.768KHz crystal. The power to the chip is

backed up by an external battery that ensures that the clock keeps running even when the shield

is powered off.

DS1307 registers

Pin-out

DS1307 pins Arduino Uno pins ATmega328 pin

SDA A4 PC4

SCL A5 PD5

43

Microcontrollers Lab

GRIET-EEE

C

D

C

2

2 U

L

0

d

Schematic

Bill of Materials

Part Value Device Package Library Sheet

BAT R2032 CR203 CR 2032 BHol er 1

C1 10uF CPOL-USE2.5-5 E2,5-5 rcl 1

C2 1 uF C-US0 5-025X050 C- S025-025X 050 rcl 1

IC1 Arduino Shield ARDUINO2009_PIN_22 ARDUINO2009_2 arduino01 1

IC2 S1307 DS1307 DI 08 ds1307_pcf8583 1

LED1 1206Red LEDCHIPLED_1206 CHIPLED_1206 led 1

Q1 rystal CRYSTALT C26H TC2 6H crystal 1

R1 10K R-US_R0204/7 0204/7 rcl 1

R2 1 0K R-US_R0204/7 02 4/7 rcl 1

R3 330R R-US_R0204/7 0204/7 rcl 1

44

Microcontrollers Lab

GRIET-EEE

Arduino program

#include "Wire.h"

#define DS1307_I2C_ADDRESS 0x68

// Convert normal decimal numbers to binary coded decimal

byte decToBcd(byte val)

{

return ((val/10*16) + (val%10));

}

// Convert binary coded decimal to normal decimal numbers

byte bcdToDec(byte val)

{

return ((val/16*10) + (val%16));

}

// 1) Sets the date and time on the ds1307

// 2) Starts the clock

// 3) Sets hour mode to 24 hour clock

// Assumes you're passing in valid numbers

void setDateDs1307(byte second, // 0-59

byte minute, // 0-59

byte hour, // 1-23

byte dayOfWeek, // 1-7

byte dayOfMonth, // 1-28/29/30/31

byte month, // 1-12

byte year) // 0-99

{

Wire.beginTransmission(DS1307_I2C_ADDRESS);

Wire.write(0);

Wire.write(decToBcd(second)); // 0 to bit 7 starts the clock

Wire.write(decToBcd(minute));

Wire.write(decToBcd(hour));

45

Microcontrollers Lab

GRIET-EEE

Wire.write(decToBcd(dayOfWeek));

Wire.write(decToBcd(dayOfMonth));

Wire.write(decToBcd(month));

Wire.write(decToBcd(year));

Wire.write(0x10);//sends 0x10 (hex) 00010000 (binary) to control register-turns on

square wave

Wire.endTransmission();

}

// Gets the date and time from the ds1307

void getDateDs1307(byte *second,

byte *minute,

byte *hour,

byte *dayOfWeek,

byte *dayOfMonth,

byte *month,

byte *year)

{

// Reset the register pointer

Wire.beginTransmission(DS1307_I2C_ADDRESS);

Wire.write(0);

Wire.endTransmission();

Wire.requestFrom(DS1307_I2C_ADDRESS, 7);

*second = bcdToDec(Wire.read() & 0x7f);

*minute = bcdToDec(Wire.read());

*hour = bcdToDec(Wire.read() & 0x3f); // Need to change this if 12 hour am/pm

*dayOfWeek = bcdToDec(Wire.read());

*dayOfMonth = bcdToDec(Wire.read());

*month = bcdToDec(Wire.read());

*year = bcdToDec(Wire.read());

}

46

Microcontrollers Lab

GRIET-EEE

void setup()

{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

Wire.begin();

Serial.begin(9600);

//Change these values to what you want to set your clock to

// You probably only want to set your clock once and then remove

// the setDateDs1307 call.

second = 0;

minute = 02; hour

= 10; dayOfWeek

= 7; dayOfMonth

= 22; month = 5;

year = 12;

setDateDs1307(second, minute, hour, dayOfWeek, dayOfMonth, month, year);

}

void loop()

{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

getDateDs1307(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month,

&year);

Serial.print(hour, DEC);// convert the byte variable to a decimal number when being

displayed

Serial.print(":");

47

Microcontrollers Lab

GRIET-EEE

if (minute<10)

{

Serial.print("0");

}

Serial.print(minute, DEC);

Serial.print(":");

if (second<10)

{

Serial.print("0");

}

Serial.print(second, DEC);

Serial.print(" ");

Serial.print(dayOfMonth, DEC);

Serial.print("/");

Serial.print(month, DEC);

Serial.print("/");

Serial.print(year, DEC);

Serial.print(" Day of week:");

switch(dayOfWeek){

case 1:

Serial.println("Sunday");

break;

case 2:

Serial.println("Monday");

break;

case 3:

Serial.println("Tuesday");

break;

case 4:

Serial.println("Wednesday");

break;

48

Microcontrollers Lab

GRIET-EEE

case 5:

Serial.println("Thursday");

break;

case 6:

Serial.println("Friday");

break;

case 7:

Serial.println("Saturday");

break;

}

//Serial.println(dayOfWeek, DEC);

delay(1000);

}

void setup()

{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

Wire.begin();

Serial.begin(9600);

second = 45;

minute = 9;

hour = 10;

dayOfWeek = 1;

dayOfMonth = 2;

month = 12;

year = 12;

//setRTC(second, minute, hour, dayOfWeek, dayOfMonth, month, year);

}

49

Microcontrollers Lab

GRIET-EEE

void loop()

{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

getRTC(&second, &minute, &hour, &dayOfWeek, &dayOfMonth,& month, &year);

Serial.print(hour,DEC);

Serial.print(“:”);

Serial.print(minute,DEC);

Serial.print(“:”);

Serial.print(second,DEC);

Serial.print(“ ”);

Serial.print(dayOfMonth,DEC);

Serial.print(“/”);

Serial.print(month,DEC);

Serial.print(“/”);

Serial.print(year,DEC);

Delay(1000);

}

50

Microcontrollers Lab

GRIET-EEE

Introduction

Color LCD

The Color LCD shield from Sparkfun provides an easy way of interfacing the popular

Nokia6100 graphic color LCD to Arduino. The shield comes with a 132x132 mini color LCD, as

well as a backlight driver circuit. The Nokia 6100 LCD is controlled through a 9-bit SPI(Serial

Peripheral Interface). The Arduino IDE has a ColorLCD library that will help in using the LCD

Pin-out

LCD pins Arduino Uno pins ATmega328 pin

Reset(RES) 8 PB0

Chip Select 9 PB1

Data in/out(DIO) 11 PB3

Serial Clock(SCK) 13 PB5

51

Microcontrollers Lab

GRIET-EEE

Arduino programs

#include <ColorLCDShield.h>

LCDShield lcd;

void setup()

{

lcd.init(PHILLIPS);

lcd.contrast(40);

lcd.clear(WHITE);

lcd.setStr("Just say no", 2, 20, SLATE, WHITE);

lcd.setStr("to addition", 110, 20, SLATE, WHITE);

lcd.setCircle(66, 66,45, BLUE);

lcd.setCircle(66, 66, 44, BLUE); // Circle in the mid, 54 radius

lcd.setRect(55, 34, 77, 98, 1, BLACK);

lcd.setRect(34, 55, 98, 77, 1, BLACK);

lcd.setLine(27, 27, 105, 105, BLUE);

lcd.setLine(26, 27, 104, 105, BLUE);

lcd.setLine(28, 27, 106, 105, BLUE);

}

void loop()

{

}

The predefined colors are:

BLACK, NAVY, BLUE, TEAL, EMERALD, GREEN, CYAN, SLATE, INDIGO,

TURQUOISE, OLIVE, MAROON, PURPLE, GRAY, SKYBLUE, BROWN, CRIMSON,

ORCHID, RED, MAGENTA, ORANGE, PINK, CORAL, SALMON, ORANGE, GOLD,

YELLOW, WHITE

There are two chipsets:

52

Microcontrollers Lab

GRIET-EEE

EPSON and PHILLIPS. The init function is called with the name of one of the

chipsets(depending on which chipset your shield has).

The Nokia 6100 LCD is a 132x132 pixel screen. The origin (0, 0 point) of the screen is as shown

in the diagram.. There's an x-axis and a y-axis, to pinpoint any of the 17424 pixels.

The setCircle function only takes one set of x/y coordinates, and centers a circle of a specified

radius around that point. setLine and setRect both require two sets of x/y coordinates. The line

function draws a straight line from coordinate 0 to coordinate 1, while the setRect draws a box

with opposite corners at the two coordinate pairs.

One final feature of the library allows you to add text to the LCD. There's the setChar function,

which allows you to place one, and only one, character at specified coordinates. Then there's

the setStr function,

which will

place a string of characters on the screen.

When you

use

the setStr or setChar functions, you get to pick two colors: a foreground and background.

53

Microcontrollers Lab

GRIET-EEE

54

Microcontrollers Lab

GRIET-EEE

Introduction

AVR programming

In the Arduino programming we have done till now, we were not required to know

anything about the actual microcontroller on which the Arduino UNO was based. The Arduino

platform was designed so that students with no prior knowledge of microcontrollers could

program and use the boards. Now, we move on to the next stage where we learn about the

microcontroller used in Arduino , its internal resources such as number of ports, internal serial

port, internal ADC and do programming based on the internal registers of the microcontroller.

The Arduino UNO is based on the 8-bit AVR ATmega328 microcontroller. The features of this

microcontroller are:

• 32KB Flash memory

• 1KB EEPROM

• 2KB RAM

• UART

• 6 channel 10 bit ADC

• SPI interface

• I2C interface

• 6 PWM channels

• Two 8-bit timers

• One 16-bit timer

The UNO board works on a 16 MHz external crystal oscillator

55

Microcontrollers Lab

GRIET-EEE

Pin-out of ATmega328

We will be using the Arduino IDE for AVR programming and hence we will still be

using the setup() and loop() functions. The compilation and download process will remain the

same, except that we will now be using the internal registers of the ATmega328 microcontroller

instead of the Arduino functions such as PinMode(), DigitalRead() and DigitalWrite().

Digital I/O

The ATmega328 has three ports: PORTB, PORTC and PORTD. For using the lines of

these ports as general purpose digital I/Os, there are three 8-bit registers associated with each of

these ports:

DDRX: (Data Direction Register)

If a 0 is put in the bit position corresponding to a port line, that port line is made as input.

If a 1 is put in the bit position corresponding to a port line, that port line is made as

output.

PORTX:

If a bit in this register is written logic one, when the pin is configured as an output pin, the port

pin will be drawn high.

56

Microcontrollers Lab

GRIET-EEE

If a bit in this register is written logic zero, when the pin is configured as an output pin,

the port pin will be drawn low.

If a bit in this register is written logic one, when the pin is configured as an input pin,

the internal pull-ups for the port pin are enabled

PINX: The status of the port pins of a port can be read using the PINX register

LEDs and switches Arduino Uno pins ATmega328 pin

LED1 8 PB0

LED2 9 PB1

LED3 10 PB2

LED4 11 PB3

LED5 12 PB4

LED6 13 PB5

S1 2 PD2

S2 3 PD3

S3 4 PD4

S4 5 PD5

S5 6 PD6

S6 7 PD7

57

Microcontrollers Lab

GRIET-EEE

Programs

In the GRIET LED shield, 6 LEDs are connected from PB0 to PB5. For configuring

port B as output and blinking them the code will be:

void setup()

{

DDRB = 0xff;

PORTB = 0xff;

}

void loop()

{

PORTB = ~PORTB;

delay(1000);

}

1. Program to read the status of switches and control the corresponding LEDs

void setup()

{

DDRB = 0xff; //making PORTB as output for driving LEDs

PORTB = 0x00;// all LEDs switched off DDRD=0x00;

// making PORTD as input PORTD=0xff; // enabling

the pull-ups for PORTD pins

}

void loop()

{

if((PIND & 0x04) == 0) PORTB=0x01;

if((PIND & 0x08) == 0) PORTB=0x02;

if((PIND & 0x10) == 0) PORTB=0x04;

if((PIND & 0x20) == 0) PORTB=0x08;

if((PIND & 0x40) == 0) PORTB=0x10;

if((PIND & 0x80) == 0) PORTB=0x20;

if((PIND==0xff) PORTB=0x00;

}

58

Microcontrollers Lab

GRIET-EEE

2. Program to set, clear and toggle individual port lines

It will be useful to be able to control individual port lines without affecting the other

lines. For this we define the following macros:

#define setbit(reg,bit) reg = reg|(1<<bit)

#define clearbit(reg,bit) reg=reg&~(1<<bit)

#define togglebit(reg,bit) reg=reg^(1<<bit)

void setup()

{

DDRB=0xff;//PORTB made as output

PORTB=0x00;//all LEDs off

}

void loop()

{

setbit(PORTB,0);

clearbit(PORTB,5);

delay(1000);

clearbit(PORTB,0);

setbit(PORTB,5);

delay(1000);

}

Excersice

Use the above macros to write code for displaying data on the 2x16 LCD

59

Microcontrollers Lab

GRIET-EEE

Serial Communication

The ATmega328 has an internal USART (Universal Synchronous Asynchronous

Receive/Transmit) for serial transmission. Two pins named RX and TX provide the serial

communication capability to ATmega328. These are alternate functions for the PD0 and PD1

pins respectively.

Initialization

For using the USART for serial communication, the following parameters need to be set:

o Baud Rate

o Enabling receive or transmit or both

o Character width

Setting the baud rate

The baud rate gives the number of bits transmitted/received per second. A 16-bit value called

UBRR0(USART Baud Rate Register) needs to be set for setting the required baud rate.The value

that will be put in UBRR0 will depend on:

o The baud rate required(BAUD)

o The frequency at which the board is working(fosc)

UBRR0 =(fosc/16*BAUD) – 1

This 16 bit value has to be split into two 8 bit registers : UBRR0H and UBRR0L

Procedure for getting the values to be put in UBRR0L and UBRR0H

1.Calculate the UBRR0 for the baud rate required. For the Arduino UNO board, the fosc

frequency is 16MHz

2.Divide the UBRR0 value by 256

3.Put the quotient in UBRR0H

4.Put the remainder in UBRR0L

Sample calculation for 9600 baud

fosc =16000000Hz

BAUD =9600

Substituting these values in the equation, we get

UBRR0=103

Following the procedure for getting the values for UBRRL0 and UBRRH0 we get

UBRR0L=103;

UBRR0H=0;

60

Microcontrollers Lab

GRIET-EEE

Enabling receive, transmit

The above figure gives the bits in the register UCSR0B (USASRT Control & Status Register B)

Bit 3: Transmit Enable

Bit 4: Receive Enable

These two bits should be made 1 in order to enable transmit and receive

The line of code to do this will be:

UCSR0B=0x18;

Setting character width

The above figure gives the bits in the register UCSR0C (USASRT Control & Status Register C)

The UCSZ00 and UCSZ01 bits along with the UCSZ02 in UCSR0B register will be used for

setting the character size as per the table given below

For setting 8-bit character size, the line of code will be

UCSR0C=0x06;

61

Microcontrollers Lab

GRIET-EEE

Data Tranmission & Reception

The USART Transmit Buffer Register and the USART Receive Buffer Register share the same

address called the USART Data Register – UDR0

To transfer data, the data has to be written to the USART Transmit Buffer. However, before we

write to the Transmit Buffer, we should ensure that the buffer is empty. The UDRE0 (UDR

Empty)Flag is present in the UCSR0A register to indicate the status of the Transmit Buffer. If

the UDRE0 Flag is set, the Transmit Buffer is empty and is ready to receive new data. The code

for transmitting data will be:

while((UCSR0A & 0x20) == 0); // keep looping till UDRE0 Flag is set

UDR0=data;

To receive data, the Receive Buffer should be read. However we should read the buffer only

when valid data is available. The RXC0 Flag indicates that there is unread data in the Receive

Buffer.

The code for receiving data will be:

while((UCSR0A & 0x80)==0);// keep looping till RXC0 Flag is set

data=UDR0;

62

Microcontrollers Lab

GRIET-EEE

Programs

The program will send a fixed character ‘A’ every second. This can be received in the

Serial Monitor

void setup()

{

UBRR0L=103;

UBRR0H=0;

UCSR0B=0x18;

UCSR0C=0x06;

}

void loop()

{

while((UCSR0A&0x20)==0);

UDR0=’A’;

delay(1000);

}

The program will receive a character and transmit it back

void setup()

{

uart_init();

}

void loop()

{

unsigned char c;

c=rxchar();

txchar(c);

}

63

Microcontrollers Lab

GRIET-EEE

void uart_init()

{

UBRR0L=103;

UBRR0H=0;

UCSR0B=0x18;

UCSR0C=0x06;

}

void txchar(unsigned char t)

{

while((UCSR0A&0x20)==0);

UDR0=t;

}

unsigned char rxchar()

{

unsigned char r;

while((UCSR0A&0x80)==0);

r = UDR0;

return r;

}

64

Microcontrollers Lab

GRIET-EEE

Internal ADC

The ATmega328 has a10-bit ADC. The ADC is connected to a 6-channel multiplexer.

For ADC operation, the parameters that need to be considered are:

o ADC voltage reference

o ADC clock

o ADC channel

ADC initialization

The ADC voltage reference can be set by the REFS0 and REFS1 bits in the ADMUX register

The AVcc option is selected by the line of code:

ADMUX = 0x40;

The ADC requires an input clock between 50KHz – 200KHz. The ADC contains a pre-scaler

which generates an acceptable clock frequency. The prescaler bits are to be set in the ADCSRA

register

65

Microcontrollers Lab

GRIET-EEE

The prescaler selections

Since the Arduino UNO operates at 16MHz, a division factor of 128 will generate a clock of

125Khz which is in the acceptable range.

The ADEN bit has to be set for the ADC to be enabled. The line of code for enabling the ADC

and setting a prescaler of 128 will be:

ADCSRA=0x87;

ADC operation

First channel should be selected, before starting conversion. The ADSC bit is set to start the

conversion. After the conversion is over, the ADSC bit becomes zero. The converted value will

be available in ADCH and ADCL. The ADC read code will be:

int adcval;

ADMUX = ADMUX | channel;//where channel can be 0 to 5

ADCSRA = ADCSRA | 0x40;

while((ADCSRA & 0x40)==0);

adcval = (ADCH<<8)|ADCL;

66

Microcontrollers Lab

GRIET-EEE

AVR programs

The program uses the LDR and tempearature sensor(LM35) on the LCD shield, reads the sensor

values and throws the values on the serial port

void setup()

{

ADMUX=0x40;

ADCSRA=0x87;

Serial.begin(9600);

}

void loop()

{

ADMUX=0x44;

Serial.print("Light = ");

Serial.println(adcRead());

delay(1000);

ADMUX=0x45;

Serial.print("Temperature = ");

Serial.println(adcRead()/2);

delay(1000);

}

int adcRead()

{

int adcVal;

unsigned char high,low;

ADCSRA=ADCSRA|0x40;

while((ADCSRA&0x40)==0x40);

low=ADCL;

high=ADCH;

adcVal=(high<<8)|low;

return adcVal;

}

67

Microcontrollers Lab

GRIET-EEE

Interrupts

On a very basic level, an interrupt is an signal that interrupts the current processor

activity. It may be triggered by an external event (change in pin state) or an internal event (a

timer or a software signal). Once triggered, an interrupt pauses the current activity and causes

the program to execute a different function. This function is called an interrupt handler or an

interrupt service routine (ISR). Once the function is completed, the program returns to what it

was doing before the interrupt was triggered.

To illustrate the concept of interrupts let us use a real-world example. Imagine you’re

sitting on your couch, enjoying a nice hot coffee and watching a movie after a long day. Life is

good. There’s only one problem: you’re waiting for an incredibly important package to arrive,

and you need it as soon as possible. If you were a normal AVR program or Arduino sketch,

you’d have to repeatedly stop your movie, get up, and go check the mailbox every 5 minutes to

make sure you knew when the package was there.

Instead, imagine if the package was sent by courier with delivery confirmation. Now, the

delivery man will go to your front door and ring the doorbell as soon as he arrives. That’s your

interrupt trigger. Once you get the trigger, you can pause your movie and go deal with the

package. That’s your interrupt service routine. As soon as you’re done, you can pick up the film

where you left off, with no extra time wasted. That’s the power of interrupts.

The AVR chips used in most Arduinos are not capable of parallel processing, i.e. they

can’t do multiple things at once. Using asynchronous processing via interrupts enables us to

maximize the efficiency of our code, so we don’t waste any precious clock cycles on polling

loops or waiting for things to occur. Interrupts are also good for applications that require precise

timing, because we know we’ll catch our event the moment it occurs, and won’t accidentally

miss anything.

68

Microcontrollers Lab

GRIET-EEE

Every AVR processor has a list of interrupt sources, or vectors, which include the type of events

that can trigger an interrupt. When interrupts are enabled and one of these events occur, the code

will jump to a specific location in program memory – the interrupt vector.

By writing an ISR and then placing a link to it at the interrupt vector’s memory location,

we can tell our code to do something specific when an interrupt is triggered. In order to

successfully use an interrupt, we’ll need to do three things:

1. Set the AVR’s Global Enable Interrupts bit in Status Register

2. Set the interrupt enable bit for our specific interrupt vector (each vector has it’s own

on/off switch)

3. Write an ISR and attach it to our target interrupt vector

Starting with the first step, we’ll include the interrupt library from avr-libc, then use an avr-

libc function to set our global interrupt enable bit. Next, we need to enable the interrupt we

want. Most 8-bit AVR’s like the ATMega328 have 2 hardware interrupts, INT0 and INT1. If

you’re using a standard Arduino board, these are tied to digital pins 2 and 3, respectively. Let’s

enable INT0 so we can detect an input change on pin 2 from a button or switch. We can use our

LEDs and switches shield for this purpose.

AVR program
#include <avr/interrupt.h>

void setup(void)

{

pinMode(2, INPUT);
digitalWrite(2, HIGH); // Enable pullup resistor

sei(); // Enable global interrupts

EIMSK |= (1 << INT0); // Enable external interrupt INT0

EICRA |= (1 << ISC01); // Trigger INT0 on falling edge

}

void loop(void)

{

69

Microcontrollers Lab

GRIET-EEE

}

// Interrupt Service Routine attached to INT0 vector

ISR(EXT_INT0_vect)

{

digitalWrite(13, !digitalRead(13));// Toggle LED on pin 13

}

70

Microcontrollers Lab

GRIET-EEE

Timers

You’re probably familiar with the general concept of a timer: something used to measure

a given time interval. In microcontrollers, the idea is the same. You can set a timer to trigger an

interrupt at a certain point in the future. When that point arrives, you can use the interrupt as an

alert, run different code, or change a pin output. Think of it as an alarm clock for your processor.

The beauty of timers is that just like external interrupts, they run asynchronously, or

independently from your main program. Rather than running a loop or repeatedly calling millis(),

you can let a timer do that work for you while your code does other things.

For example, say you’re building a security robot. As it roams the halls, you want it to

blink an LED every two seconds to let potential intruders know they’ll be vaporized if they make

a wrong move. Using normal code techniques, you’d have to set a variable with the next time the

LED should blink, then check constantly to see if that time had arrived. With a timer interrupt,

you can set up the interrupt, then turn on the timer. Your LED will blink perfectly on cue, even

while your main program executes its complicated terminateVillian() routine.

Timers work by incrementing a counter variable, also known as a counter register. The

counter register can count to a certain value, depending on its size. The timer increments this

counter one step at a time until it reaches its maximum value, at which point the counter

overflows, and resets back to zero. The timer normally sets a flag bit to let you know an overflow

has occurred. You can check this flag manually, or you can also have the timer trigger an

interrupt as soon as the flag is set. Like any other interrupt, you can specify an Interrupt Service

Routine (ISR) to run code of your choice when the timer overflows. The ISR will reset the

overflow flag behind the scenes, so using interrupts is usually your best option for simplicity and

speed.

In order to increment the counter value at regular intervals, the timer must have access to a clock

source. The clock source generates a consistent repeating signal. Every time the timer detects

this signal, it increases its counter by one.

71

Microcontrollers Lab

GRIET-EEE

The ATmega328 has three timers: Timer0, Timer1, and Timer2. Here are a few details about

each timer:

Timer0

Timer0 is an 8-bit timer, meaning its counter register can record a maximum value of 255 (the

same as an unsigned 8-bit byte). Timer0 is used by native Arduino timing functions such as

delay() and millis()

Timer1

Timer1 is a 16-bit timer, with a maximum counter value of 65535 (an unsigned 16-bit integer).

The Arduino Servo library uses this timer, so be aware if you use it in your projects.

Timer2

Timer2 is an 8-bit timer that is very similar to Timer0. It is utilized by the Arduino tone()

function.

Configuring and running the timers

In order to use these timers, we need to set them up, then make them start running. To do

this, we’ll use built-in registers on the AVR chip that store timer settings. Each timer has a

number of registers that do various things. Two of these registers hold setup values, and are

called TCCRxA and TCCRxB, where x is the timer number (TCCR1A and TCCR1B, etc.).

TCCR stands for Timer/Counter Control Register. Each register holds 8 bits, and each bit stores

a configuration value. Here are the details, taken from the ATmega328 datasheet:

72

Microcontrollers Lab

GRIET-EEE

To start using our timer, the most important settings are the last three bits in TCCR1B,

CS12, CS11, and CS10. These dictate the timer clock setting. By setting these bits in various

combinations, we can tell the timer to run at different speeds. Here’s the relevant table from the

datasheet:

By default, these bits are set to zero. Let’s use a simple example, and say that we want to

have Timer1 run at clock speed, with one count per clock cycle. The pre-scaler is set to 1024.

Since the Arduino runs at 16Mhz, this pre-scaler setting gives a clock of 16000000/1024, a timer

resolution of 0.000064secs. The number of such counts that will occur in 1 second will be

1/0.000064 = 15625counts. AVR micros support a mode called CTC,Clear Timer On Compare

Match where the timer gets reset when the cont matches a preset value loaded in a register and

an interrupt is generated. This is the mode we will be using in our example to get a timing of 1

second.

73

Microcontrollers Lab

GRIET-EEE

AVR Program

// Arduino timer CTC interrupt example

#include<avr/io.h>

#include<avr/interrupt.h>

#define LEDPIN 13

void setup()

{

pinMode(LEDPIN, OUTPUT);

// initialize Timer1

cli(); // disable global interrupts

TCCR1A = 0; // set entire TCCR1A register to 0

TCCR1B = 0; // same for TCCR1B

// set compare match register to desired timer count:

OCR1A = 15625;

// turn on CTC mode:

TCCR1B |= (1 << WGM12);

// Set CS10 and CS12 bits for 1024 prescaler:

TCCR1B |= (1 << CS10);

TCCR1B |= (1 << CS12);

// enable timer compare interrupt:

TIMSK1 |= (1 << OCIE1A);

// enable global interrupts:

sei();

}

void loop()

{

}

ISR(TIMER1_COMPA_vect)

{

digitalWrite(LEDPIN, !digitalRead(LEDPIN));}

74

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

Microcontrollers Lab

Use this space for writing Exercise Programs

